les cahiers itineraires d'ity France

N° 12 ◆ JUILLET 2006

Brettanomyces et phénols volatils

Prévenir et limiter les altérations

Quand les nobles arômes de « vieux vins » cèdent la place au « cuir », à «l'animal» puis à «l'écurie», le terroir s'en trouve souvent, pauvrement et injustement, affublé. Sous ces arômes se trouvent en réalité un ensemble de molécules responsables : les phénols volatils, produites par de simples organismes microscopiques: les levures Brettanomyces. Leur production ne doit cependant pas être considérée comme une fatalité mais plutôt comme un avertissement nécessitant la remise en question des pratiques œnologiques mises en œuvre par le vinificateur. Bien qu'ayant été identifié depuis plusieurs dizaines d'années, le caractère phénolé continue à se développer et à déprécier la qualité des vins. Ne touchant pratiquement que les vins rouges, ce défaut n'exclut aucune région, aucun pays...

La collection des itinéraires techniques est éditée par ITV France.

Directeur de la publication: Jean-Pierre van Ruyskensvelde.

N° ISSN: 2-906417-38-6. Crédits photos: ITV France: Béatrice Vincent,
René Naudin, Vincent Gerbaux, Morvan Coarer, Jean-Michel Desseigne,
Philippe Cottereau, Pascal Poupault, Emmanuel Vinsonneau. Conception éditoriale et graphique: TEMA, 0387691801. Impression: imprimé sur papier blanchi
sans chlore élémentaire par Socos'print (88). Dépôt légal: juillet 2006.

© ITV France. Le Code de la propriété intellectuelle n'autorisant, aux termes de l'article L.122-5, d'une part, que « les copies ou reproductions strictement réservées à l'usage privé du copiste et non destinées à une utilisation collective » et, d'autre part, que les analyses et les courtes citations dans un but d'exemple et d'illustration, « toute représentation ou reproduction même partielle, faite sans le consentement de l'auteur ou de ses ayants droit ou ayants cause, est illicite » (article L.122-4). Cette représentation ou reproduction, par quelque procédé que ce soit constituerait donc une contrefaçon sanctionnée par les articles L.335-2 et suivants du Code de la propriété intellectuelle.

Brettanomyces et

Famille: Cryptococcaceae Genre: Brettanomyces **Espèce**: *Brettanomyces*

bruxellensis (forme non sporulante) **Dekkera bruxellensis** (forme sporulante) Plus connue sous le nom de... « Brett »

Brettanomyces

Origines et caractéristiques

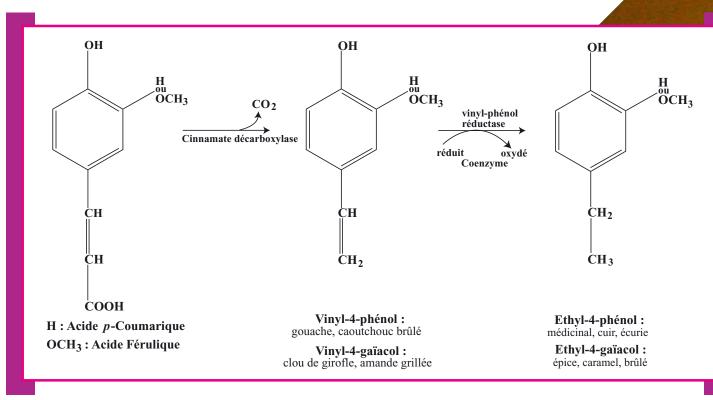
Brettanomyces est considérée comme une levure de contamination des vins en cours d'élevage par le biais d'un matériel de cave insuffisamment nettoyé. L'hygiène stricte des chais est donc un moyen de limiter leur prolifération d'une cuvée à l'autre. Cependant, l'origine de Brettanomyces est généralement le raisin lui-même, ce qui explique la présence de ces levures y compris dans des chais où l'hygiène est irréprochable.

Brettanomyces est une levure peu exigeante en source nutritive, résistante à l'alcool et aux faibles pH. Ces caractéristiques lui permettent de s'adapter rapidement aux conditions vinaires, de s'implanter et de se développer dans les vins pendant et après fermentation alcoolique (FA). Ce développement est d'autant plus rapide que le pH est élevé et que le degré d'alcool est faible.

D'un point de vue morphologique, *Brettanomyces* est une levure de petite taille et de forme très hétérogène, d'ovale à apiculée, ce qui permet de la distinguer de Saccharomyces cerevisiae qui est plutôt de forme homogène.

Toutes les souches de *Brettanomyces* sont produc-

nols volatils peut varier en fonction des souches de Brettanomyces, mais il est surtout influencé par la quantité de précurseurs libres ainsi que par les paramètres physico-chimiques du milieu (pH, degré) et la température dont dépend directement la croissance des Brettanomyces.


phénols volatils

Phénols volatils

◆ Structure et formation dans les vins

Les principaux phénols volatils responsables d'altérations dans les vins sont l'éthyl-4-phénol (E4P) et l'éthyl-4-gaïacol (E4G). Ces composés sont issus de la biotransformation d'acides cinnamiques précurseurs naturellement présents dans le raisin (pellicule et pulpe des raisins) donc dans le vin : l'acide *para*-coumarique et l'acide férulique. Ces précurseurs sont présents sous formes libres ou liées ; mais seules les formes libres sont métabolisées par *Brettanomyces*.

La transformation des précurseurs par *Brettanomyces* fait intervenir deux activités enzymatiques successives :

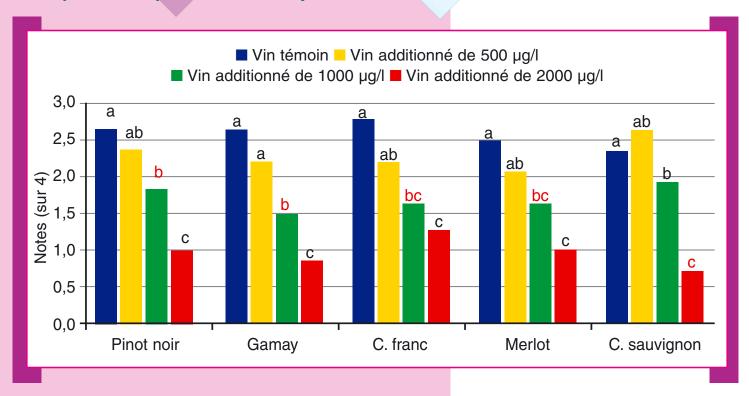
- ◆ la première enzyme (Cinnamate décarboxylase) permet la transformation des acides cinnamiques en vinyl-4-phénol et vinyl-4-gaïacol, composés peu aromatiques;
- ◆ la seconde enzyme (Vinyl-phénol réductase) assure la transformation des vinyl-phénols en éthyl-phénols.

La quantité de précurseurs libres dans un vin dépend du cépage considéré, du millésime, de la maturité de la récolte et du mode de vinification employé. Cette variabilité rend impossible la modélisation des risques en fonction des cépages... Les seuils de perception dans les vins rouges sont très variables. Les seuils communément admis sont de 500 μ g/l pour l'E4P et 100 μ g/l pour l'E4G. La perception des phénols volatils est extrêmement variable en fonction de la structure du vin : certains produits peuvent supporter plus de 600 μ g/l de phénols volatils sans perte de qualité.

Dans les vins, les phénols volatils sont des molécules stables pour lesquelles il n'existe pas de traitements curatifs à l'heure actuelle.

Brettanomyces et

Phénols volatils


Profils aromatiques et qualité des vins

Une perte de qualité significative

L'appréciation de la qualité des vins phénolés lors d'une dégustation par un jury de professionnels reste très subjective si aucun élément de comparaison n'est possible avec un vin exempt de défauts. De plus, un vin phénolé peut être apprécié par certains consommateurs. En revanche, la dégustation comparative montre nettement que la présence de phénols volatils, au-delà d'une **concentration critique** variable en fonction de la structure des vins, réduit de façon significative la qualité du produit (figure 1).

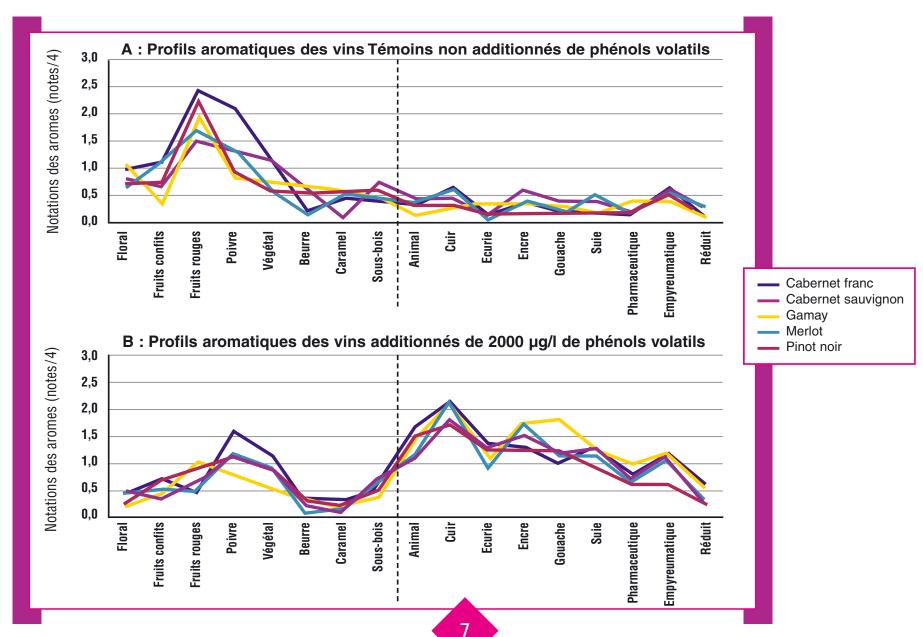
Pour la plupart des cépages étudiés ici (pinot noir, gamay, cabernet franc, merlot), la perte de qualité est significative pour des quantités de phénols volatils comprises entre 500 et 1 000 µg/l. Pour le vin de cabernet sauvignon, il faut entre 1 000 et 2 000 µg/l pour réduire significativement la qualité.

Figure 1. Notation de la qualité globale de différents vins en fonction de la quantité de phénols volatils ajoutés.

Les lettres représentent l'étude de la PPDS à 5 % : Tous les lots ayant au moins une lettre en commun ne sont pas significativement différents au seuil de 5 %.

Même s'il apparaît que de faibles quantités de phénols volatils peuvent donner aux vins une complexité parfois appréciée, il ne faut pas perdre de vue que la production de phénols volatils par *Brettanomyces* ne peut pas être maîtrisée. C'est pourquoi, il est toujours nécessaire de limiter la multiplication de *Brettanomyces* avant le début de la production non maîtrisable des phénols volatils.

phénols volatils


Une modification totale des profils aromatiques des vins contaminés

La perte de qualité peut être directement reliée à une modification profonde des profils aromatiques des vins lors de la dégustation par un jury de professionnels. Pour les cépages étudiés, les profils aromatiques des vins témoins mettent en avant une description essentiellement basée sur les termes génériques de « fruité » et « épicé ». Ces vins témoins ne sont pas additionnés de phénols volatils et l'analyse confirme l'absence de ces molécules. Additionnés expérimentalement de 2 000 µg/l de phénols volatils (mélange d'E4G et E4P avec un ratio de 1/10), ces mêmes vins donnent des profils aromatiques complètement décalés vers des descriptifs tels que « cuir », « encre », « gouache », « suie » et « écurie ».

Sous l'effet des phénols volatils, la perte des arômes « fruités », comme l'augmentation des arômes « cuir » sont significatifs au seuil de 5 %. La dégustation de vins phénolés s'accompagne souvent d'une amertume et d'un caractère métallique perçus en fin de bouche. Dans les cas extrêmes ou pour des vins dont la structure ne supporte pas ce défaut, les

phénols volatils finissent par uniformiser complètement les arômes de vins initialement très différents. Ils masquent finalement les qualités conférées initialement à un vin par un cépage ou un terroir particulier.

Figure 2. Profils aromatiques de vins de différents cépages A : vins témoins - B : vins additionnés de 2 000 μ g/l de phénols volatils

Fermentation alco

Tout doit être mis en œuvre pour assurer un bon déroulement des fermentations alcooliques et éviter la présence de sucres réducteurs résiduels.

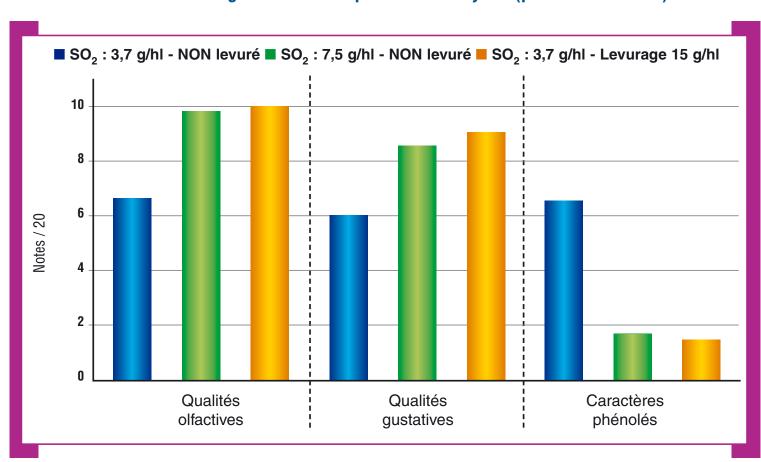
Tableau 1. Influence du levurage et du sulfitage sur une vendange contaminée par *Brettanomyces* (pinot noir – 2004).

Brettanomyces en fin de FA (ufc/ml)

Phénols volatils en fin de FA (µg/l)

Phénols volatils en fin de FML (µg/l)

Vin issu d'une vendange	Vin issu d'une vendange	Vin issu d'une vendange
faiblement sulfitée	normalement sulfitée	faiblement sulfitée
(3,7 g/hl) et NON levurée	(7,5 g/hl) et NON levurée	(3,7 g/hl) et levurée
40 000	3 000	700
94	12	17
467	68	75


*ufc/ml : Unité Formant Colonie : unité de mesure pour l'évaluation du nombre de cellules/ml de vin par les techniques de microbiologie classique.

Les bienfaits du levurage sur les vendanges contaminées

L'ensemencement des moûts par une levure sélectionnée (LSA) est un moyen efficace d'assurer un bon déroulement des FA et de limiter, par les phénomènes de compétition entre micro-organismes, l'implantation et le développement de Brettanomyces. Les analyses montrent que pour une vendange contaminée, la pratique du levurage permet de réduire de façon significative les populations de Brettanomyces et les quantités de phénols volatils dans le vin (tableau 1). Lors de la dégustation, la diminution de la perception des caractères phénolés dans le vin issu de la vinification avec levurage, est significative au seuil de 5 % et les qualités olfactives et gustatives sont nettement supérieures (figure 3).

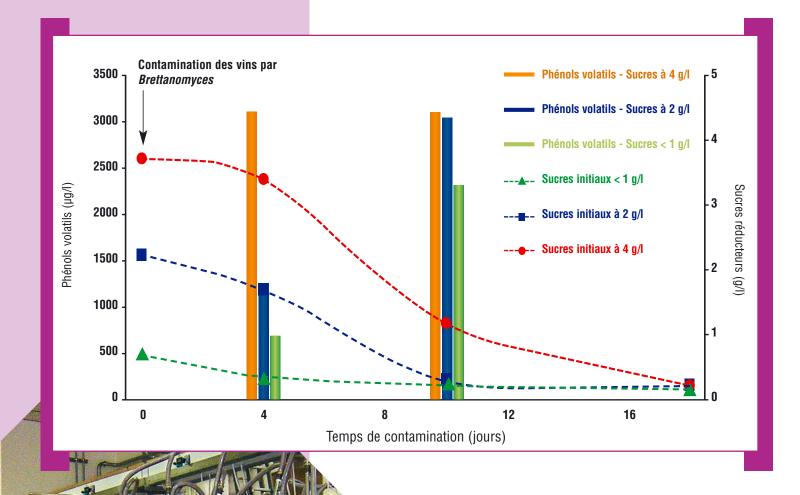
olique

Figure 3. Exemple de l'influence du levurage ou du sulfitage sur les qualités organoleptiques d'un vin issu d'une vendange contaminée par *Brettanomyces* (pinot noir – 2004)

◆ Influence du sulfitage de la vendange

La pratique d'un sulfitage correct de la vendange, associé à la maîtrise du bon déroulement de la FA, permet de réduire les populations de *Brettanomyces* et les quantités de phénols volatils en fin de FA (tableau 1).

Après fermentation malolactique (FML), la dégustation confirme l'impact bénéfique du sulfitage (figure 3) sur la qualité des vins issus de vendanges fortement contaminées par Brettanomyces. Une amélioration significative de la qualité est observée dans les vins issus de vendanges normalement sulfitées (7,5 g/hl) par rapport au vin issu de la même vendange faiblement sulfitée (3,7 g/hl). Cependant, la réalisation du sulfitage de la vendange doit être une action raisonnée. En effet, si les doses plus importantes de SO, à l'encuvage protègent mieux le vin contre les Brettanomyces présentes sur raisin, en revanche, elles retardent par la suite l'enclenchement de la fermentation malolactique. La phase de latence est propice à un développement des *Brettanomyces*, mais elle peut être limitée par la réalisation d'un ensemencement bactérien en fin de FA. En tout état de cause, un sulfitage approprié à l'encuvage est nécessaire pour limiter l'action de Brettanomyces.



Fermentation alco

Figure 4. Consommation des sucres réducteurs résiduels et production de phénols volatils dans les vins contaminés par 100 000 ufc/ml de *Brettanomyces* – Influence de la quantité de sucres résiduels.

◆ Augmentation des risques en cas de problème de fin de FA

La présence de sucres réducteurs résiduels (glucose + fructose) augmente le risque de développement de *Brettanomyces* (figure 4) et par conséquent de production de phénols volatils. Le vin contenant les quantités de sucres résiduels les plus importantes, présente plus de 3 000 µg/l de phénols volatils, 4 jours seulement après contamination.

La transformation complète des sucres en alcool doit donc être un facteur primordial lors de la vinification mais les problèmes de fin de FA sont ambigus. En effet, il n'a pas encore été établi avec certitude si les problèmes de fin de FA sont la cause ou la conséquence d'un développement de *Brettanomyces*.

Dans tous les cas, une FA qui ralentit de façon inexpliquée est le signe d'un risque possible de contamination par *Brettanomyces*. Il convient alors de tout mettre en œuvre pour limiter le phénomène.

À lire :
Arrêts de fermentation
alcoolique
Plaquette d'information éditée par
ONIVINS/ITV France/INRA/

PNAL THE

Œnologues de France -1999

olique

◆ Influence de la température de macération sur les populations de *Brettanomyces*

Plusieurs pratiques utilisant **la chaleur** peuvent être employées pour assurer une meilleure extraction des composés phénoliques et de la couleur :

- ◆ Macération préfermentaire à chaud : chauffage de la vendange entre 65 et 75 °C durant généralement 20 à 40 minutes.
- ◆ Flash détente : chauffage court de 4 à 10 minutes à forte température (jusqu'à 90 °C) suivi d'une mise sous vide (20 à 50 hPa).
- ◆ Macération finale à chaud : chauffage du vin (sucres terminés) et des marcs à 42 °C durant 24 à 48 heures puis refroidissement avant pressurage. Ces techniques provoquent la destruction des cellules microbiennes dans les volumes chauffés et réduisent ainsi les populations de Brettanomyces ; mais elles ne protègent pas le vin contre une contamination ultérieure.

◆ Influence de la température de macération et de l'enzymage sur les phénols volatils

En cas de contamination par *Brettanomyces*, la production de phénols volatils dans un vin issu d'une technique de macération faisant intervenir la chaleur (meilleure extraction de précurseurs) est en moyenne 3 fois plus importante que dans le vin issu d'une macération sans chauffage (tableau 2).

L'utilisation d'enzymes œnologiques non purifiées – présence d'une activité secondaire favorisant le passage des précurseurs liés en précurseurs libres transformables par *Brettanomyces* – constitue un second risque. Le couplage des deux techniques – chauffage + enzymage – peut provoquer une production de phénols volatils jusqu'à dix

fois plus élevée que dans un vin non chauffé non enzymé. L'utilisation d'enzymes œnologiques ne présente aucun risque si l'enzyme utilisée est purifiée et si elle porte la mention « FCE » pour Free Cinnamyl Esterase signifiant qu'elle ne favorise plus la transformation des précurseurs liés en précurseurs libres.

Tableau 2. Quantité de phénols volatils produits dans des vins issus de différentes techniques de vinification et contaminés par *Brettanomyces* après FA.

	Vinification avec macération classique sans chauffage	Vinification avec macération finale à chaud (MFC)
Pas d'enzymage à l'encuvage	117 μg/l	352 µg/l
Utilisation à l'encuvage d'une enzyme d'extraction non purifiée	235 µg/l	1 147 µg/l
Utilisation à l'encuvage d'une enzyme d'extraction purifiée (FCE)	92 µg/l	338 µg/l
Utilisation à l'encuvage d'une enzyme de clarification non purifiée	470 µg/l	617 µg/l

Fermentation male

Maîtrise de la fermentation malolactique (FML)

Le temps d'attente entre la fin de la FA et le début de la FML constitue une fenêtre ouverte à la contamination du vin par Brettanomyces : contaminations exogènes lors des opérations de cave utilisant du matériel mal nettoyé ou lors des opérations de remplissage des

> endogènes par multiplication rapide des Brettanomyces présentes depuis la vendange. Pour limiter cette phase de risque, le vinificateur peut avoir recours à l'ensemencement bactérien avec des souches d'Oenococcus oeni sélec-

fûts en utilisant un vin contaminé; ou contaminations

tionnées.

En effet, la présence des bactéries

lactiques limite le métabolisme des levures. Les quantités de phénols volatils dans les vins ensemencés en bactéries lactiques sont diminuées de 30 à 100 % en fonction de la température et des propriétés physico-chimiques du vin. La réalisation d'un ensemencement en bactéries lactiques sur une cuvée contaminée par Brettanomyces permet de réduire de façon significative le délai de réalisation de la FML et donc de réduire le temps d'activité de

Brettanomyces avant stabilisation (tableau 3).

Tableau 3. Influence de l'ensemencement bactérien sur les populations et les teneurs en phénols volatils d'un vin contaminé par *Brettanomyces*.

Vin contaminé par Brettanomyces, NON ensemencé avec O. oeni

Vin contaminé par Brettanomyces, ensemencé avec O. oeni

Délai de réalisation de la FML à 18 °C (jours)

58

15

Phénols volatils après FML (Somme E4P + E4G en µg/l)

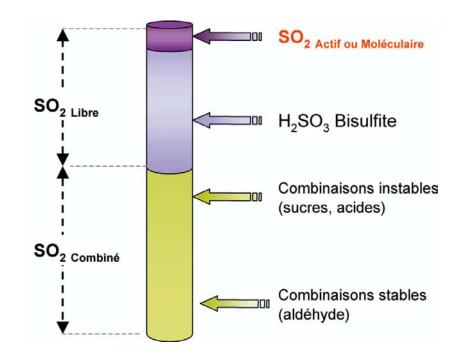
1 274

< au seuil de détection

À lire : Maîtrise de la fermentation malolactique

Ensemencement bactérien des vins Les Cahiers Itinéraires d'ITV France n° 2 novembre 2001

Il est toujours nécessaire de procéder à une stabilisation microbiologique rapide des vins en fin de FML par sulfitage.

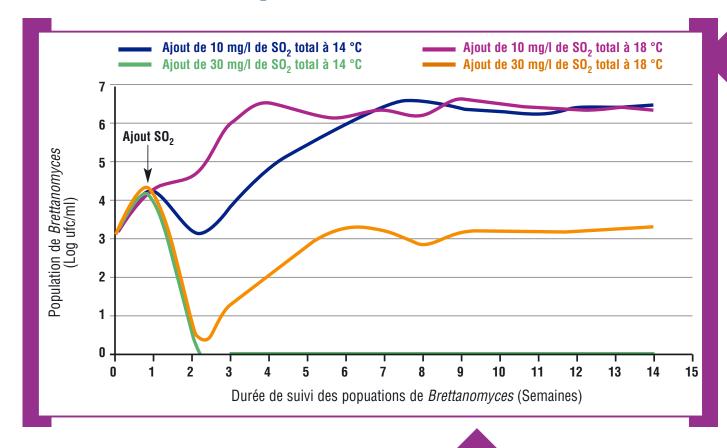

Attention : le lysozyme, autorisé en œnologie dans le cadre de la maîtrise des bactéries lactiques est sans effet sur Brettanomyces.

lolactique

◆ Gestion du SO₂ après FML

Après FML, le sulfitage est la pratique la plus utilisée pour stabiliser les vins : seule une partie du SO_2 libre – le $\mathbf{SO_2}$ actif – possède une action antimicrobienne. La quantité de $\mathbf{SO_2}$ actif varie fortement en fonction de l'acidité, du pH et de l'alcool des vins : le SO_2 actif représente 6 % du SO_2 libre à pH 3.0 ; 2 % à pH 3.5 et seulement 0,6 % à pH 4.0.

Par exemple: entre un pH de 3,3 et un pH de 3,8 (toute chose étant comparable par ailleurs), il faudra parfois jusqu'à 3 fois plus de SO_2 libre dans le vin à pH 3,8 pour obtenir un effet protecteur équivalent à celui d'une dose 3 fois plus faible dans le vin à pH 3.3.



L'efficacité du sulfitage varie donc en fonction de la part de $\mathbf{SO_2}$ actif, mais aussi en fonction de la température et du niveau de population des Brettanomyces: plus le sulfitage est effectué sur une faible population, plus il est efficace. Si la dose de $\mathbf{SO_2}$ actif n'est pas suffisante, les levures restantes peuvent se multiplier à nouveau (figure 5). Une dose de $\mathbf{0,6}$ mg/l de $\mathbf{SO_2}$ actif est généralement suffisante, mais il est tout de même conseillé de vérifier les niveaux de population de Brettanomyces quinze jours après le traitement; certaines souches pouvant justifier une dose nettement supérieure.

$$SO_{2 \text{ Total}} = SO_{2 \text{ Combiné}} + SO_{2 \text{ Libre}}$$

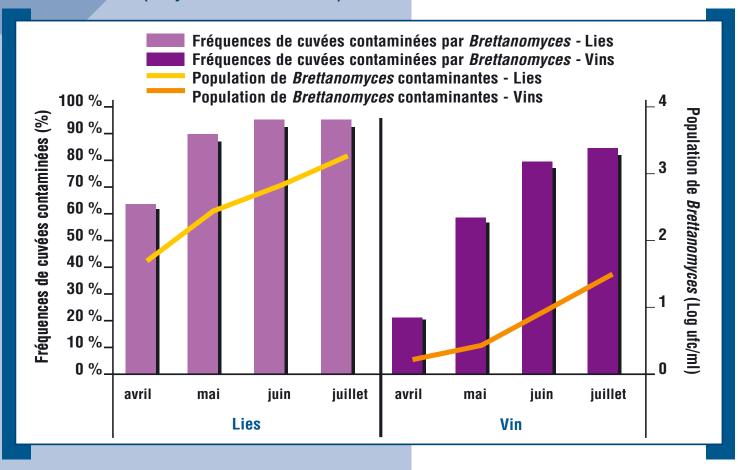
 $SO_{2 \text{ Libre}} = SO_{2 \text{ Actif ou Moléculaire}} + Bisulfites$

Figure 5. Efficacité du sulfitage sur la population de *Brettanomyces* en fonction de la dose de SO_2 total ajoutée et de la température.

À lire :
La maîtrise du sulfitage
des moûts et des vins
Les cahiers Itinéraires
ITV France n° 3
mai 2002.

La bonne gestion du SO₂ doit être poursuivie ensuite en cours d'élevage par des contrôles et des réajustements réguliers du SO₂ actif.

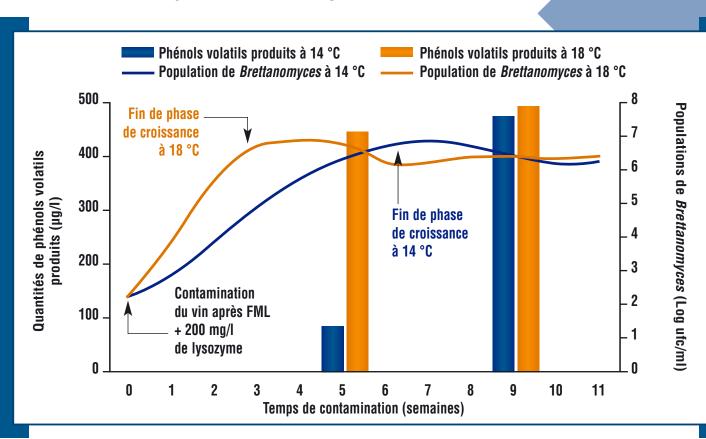
Figure 6. Comparaison des analyses microbiologiques entre les lies et les vins (moyenne de 19 cuvées).


Élevage

◆ Localisation des *Brettanomyces* dans les vins en cours d'élevage

Brettanomyces, levure de petite taille, sédimente dans le fond des cuves ou des fûts contaminés. Dans les lies, les Brettanomyces ne stoppent pas leur activité de transformation des précurseurs en phénols volatils. Ainsi, au cours de l'élevage et notamment avec le réchauffement des caves, des contrôles réalisés entre avril et juillet montrent que l'analyse des vins par rapport à l'analyse des lies sous-estime la fréquence des cuvées contaminées et les niveaux de populations de Brettanomyces (figure 6). En effet, en fin d'élevage, avec l'augmentation des températures de cave, l'analyse des lies montre que 85 % des cuvées en moyenne sont contaminées avec des niveaux de populations croissantes pouvant atteindre 10 000 ufc/ml alors que l'analyse des vins ne met en évidence que 60 % de cuvées contaminées en moyenne avec des populations inférieures à 100 ufc/ml.

Les lies contaminées peuvent contenir jusqu'à 100 fois plus de phénols volatils que les vins. En cas de contamination, il est donc conseillé de recourir à un **soutirage** pour les éliminer.


Ces lies contaminées ne doivent en aucun cas être réincorporées dans un schéma de vinification sans un traitement préalable (traitement à la chaleur...) et une analyse microbiologique s'assurant de l'absence de *Brettanomyces* vivantes résiduelles.

◆ Influence de la température sur la croissance et le métabolisme de *Brettanomyces*

La régulation des températures des caves à 14 °C permet de limiter la croissance cellulaire avant, mais aussi après FML.

Figure 7. Évolution des populations de *Brettanomyces* en fonction de la température de stockage des vins.

La figure 7 donne un exemple de croissance de Brettanomyces et de production de phénols volatils dans un vin ayant terminé la FML, stabilisé par 200 mg/l de lysozyme. À 14 °C, la population initiale de 100 ufc/ml de vin atteint la phase stationnaire (maximum de croissance) en 7 semaines, contre 3 semaines seulement à 18 °C.

La baisse de température n'empêche pas la multiplication mais la ralentit considérablement. Ce qui laisse le temps au vinificateur de réagir avant la production de phénols volatils, si toutefois, une analyse microbiologique préventive est réalisée pour détecter les *Brettanomyces*.

Pour d'autres vins, l'évolution à 18 °C peut être encore plus rapide. C'est pourquoi il est nécessaire de conserver les vins à faible température. Cependant, le refroidissement des caves peut aussi augmenter la phase de latence entre la fin de FA et le début des FML, phase de latence propice à la contamination des vins par *Brettanomyces*. Mais il est possible de coupler la maîtrise des FML avec le maintien de faibles températures en caves par l'utilisation de bactéries lactiques lyophilisées.

